

Question Paper

B.Sc. Honours Examinations 2020

(Under CBCS Pattern)

Semester - III

Subject: CHEMISTRY

Paper : C 6-T & C 6-P

(Inorganic Chemistry)

Full Marks : 60 (Theory-40 + Practical-20) Time : 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

[THEORY]

Answer any *two* questions :

1.

 $2 \times 20 = 40$

- (a) What is lattice energy ? What does the -ve sign of lattice energy mean ?
 - (b) The bond angle of NH_3 is $107^{\circ}48^{\circ}$ but that of PH_3 is 93.8° Why?
 - (c) Define specific activity of radioactive elements.
 - (d) Draw the structures of XeF_3^+ and ICl_2^- using VBT.
 - (e) What is spallation reaction?
 - (f) Apply Bent's rule to explain the structure of OSF_4 .
 - (g) How does the even and odd numbers of protons and neutrons effect the nuclear stability of an atom ?
 - (h) What is meant by artificial radioactivity?

2¹/₂×8=20

2.	(i)	(a)	Define bonding and antibonding molecular orbital.
		(b)	With the help of Born Haber cycle discuss various steps to obtain a relation for lattice energy of MgO. $4 + 5$
	(ii)	(a)	²⁴ Na has $t_1 = 15$ hrs. If there are 800 gm of ²⁴ Na initially, how long will it take for 750 gm of ²⁴ Na to decay ? 5
		(b)	Explain the magnetic property and ligating behaviour of CO molecule with the help of MO theory. 6
3.	(i)	(a)	What is the origin of the solar energy?
		(b)	Dipole moment of HF molecule is 1.91D and value of H-F bond distance is 0.92 Å. Calculate the percentage of ionic character of H-F bond.
		(c)	Define packing fraction. $1\frac{1}{2} + 2 + 1\frac{1}{2}$
	(ii)	(a)	MgCO ₃ is thermally less stable than CaCO ₃ -explain.
		(b)	Write down a short not on radiocarbon dating. $2 + 3$
	(iii)	(a)	The tri-iodide ion, I_3^- is linear, but I_3^+ is bent – explain.
		(b)	Complex forming ability of group IIA metal changes as $Be^{2+}>Mg^{2+}>Ca^{2+}>Sr^{2+}>Ba^{2+}>-$ why ?
		(c)	What is mirror nuclei ? Give an example. $2+2+1$
	(iv)	(a)	Write a short not on 'Ion Dipole Interaction'.
		(b)	Which molecule shows both Frenkel and Schottky defect?
		(c)	Explain why $SnC1_4$ is volatile liquid, but $SnC1_2$ is solid. $2 + 1 + 1$
4.	(i)	(a)	complete the following reaction.
			i) ${}^{14}_{7}N + {}^{1}_{0}n \longrightarrow {}^{11}_{5}B + ?$
			ii) ${}^{63}_{29}Cu + {}^{2}_{1}H \longrightarrow ?$
		(b)	Compare the relative sability of N_2 , N_2^+ , N_2^- and N_2^{2-} based on MO theory.
		(c)	How does Aluminium change its hybridization in the following reaction?
			$\mathrm{AICI}_{3+}\mathrm{Cl}^- \to \mathrm{AICI}_4^-$
		(d)	Calculate the binding energy per nucleon (in units of MeV) for ⁹ Be for which the atomic mass is 9.01219 amu.
			Particles mass in amu is– Proton = 1.007277

2 + 3 + 2 + 3			
3 + 2 + 3 + 2			
(Inorganic Chemistry)			
$1 \times 20 = 20$			
1. Estimation of the amount of Fe and Fe_2O_3 present in Portland Cement. 20			
20			
20			
20			